Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.313
Filtrar
1.
Int J Biol Sci ; 19(16): 5275-5289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928270

RESUMO

Osteoarthritis (OA) is a prevalent joint disease commonly associated with aging and obesity, which can lead to pain, stiffness, joint dysfunction, and disability. Omentin-1 (also called intelectin-1) is a newly discovered adipokine, which plays a protective role in suppressing the secretion of pro-inflammatory cytokines. Based on data from the Gene Expression Omnibus (GEO) dataset and clinical samples obtained at our institution revealed, determined that omentin-1 and IL-4 (an anti-inflammatory cytokine) levels were significantly lower in OA patients than in normal controls. Omentin-1 was shown to induce IL-4-depedent anti-inflammatory responses and M2 macrophage polarization in OA synovial fibroblasts via the PI3K, ERK, and AMPK pathways. Administering omentin-1 was shown to block cartilage degradation and bone erosion resulting from anterior cruciate ligament transection by inhibiting the production of pro-inflammatory cytokines and promoting M2 macrophage polarization in vivo. Our findings indicate omentin-1 as a promising therapeutic avenue for the treatment for OA.


Assuntos
Citocinas , Interleucina-4 , Macrófagos , Osteoartrite , Humanos , Citocinas/metabolismo , Interleucina-4/imunologia , Macrófagos/imunologia , Osteoartrite/imunologia
2.
Zhonghua Nei Ke Za Zhi ; 62(2): 217-221, 2023 Feb 01.
Artigo em Chinês | MEDLINE | ID: mdl-36740416
3.
J Orthop Surg Res ; 17(1): 246, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459188

RESUMO

BACKGROUND: miRNA-4701-5p has been reported to be a vital regulator in many diseases, including rheumatoid arthritis, and miRNA-4701-5p is evidenced to be participated in synovial invasion and joint destruction. In our report, we investigated the roles of miRNA-4701-5p in osteoarthritis (OA) and analyzed the molecular mechanism. METHODS: Interleukin-1ß (IL-1ß) was applied for stimulating human chondrocyte CHON-001 cells to establish an OA injury model. mRNA levels and protein expression were measured using qRT-PCR and western blot assay, respectively. The proliferation ability and cytotoxicity of CHON-001 cells were checked using MTT assay and lactate dehydrogenase activity. The inflammation of chondrocytes was accessed by the secretion levels of interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor (TNF)-α. The apoptosis of chondrocytes was determined by flow cytometry assay. Bioinformatics software Starbase v2.0 analyzed the functional binding sites between miRNA-4701-5p and HMGA1 and the interaction was further confirmed using dual luciferase reporter analysis. RESULTS: miRNA-4701-5p was down-regulated in the IL-1ß-stimulated chondrocytes and HMGA1 directly targeted miRNA-4701-5p. Up-regulation of miRNA-4701-5p could alleviate IL-1ß-treated CHON-001 cells inflammation and apoptosis, and reversed the cell proliferation decrease and cytotoxicity increase after IL-1ß treatment. Nevertheless, all the roles of miRNA-4701-5p overexpression in CHON-001 cells could be reversed by HMGA1 up-regulation. CONCLUSIONS: miRNA-4701-5p could alleviate the inflammatory injury of IL-1ß-treated CHON-001 cells via down-regulating HMGA1, indicating that miRNA-4701-5p/HMGA1 is a promising therapeutic target for OA.


Assuntos
Condrócitos , Proteína HMGA1a , Interleucina-1beta , MicroRNAs , Osteoartrite , Apoptose , Condrócitos/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/imunologia , Proteína HMGA1a/metabolismo , Proteína HMGA1a/uso terapêutico , Humanos , Inflamação/metabolismo , Interleucina-1beta/efeitos adversos , Interleucina-1beta/metabolismo , MicroRNAs/genética , MicroRNAs/imunologia , MicroRNAs/metabolismo , Osteoartrite/etiologia , Osteoartrite/imunologia , Osteoartrite/metabolismo , Fatores de Transcrição/metabolismo
4.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163417

RESUMO

Some say that all diseases begin in the gut. Interestingly, this concept is actually quite old, since it is attributed to the Ancient Greek physician Hippocrates, who proposed the hypothesis nearly 2500 years ago. The continuous breakthroughs in modern medicine have transformed our classic understanding of the gastrointestinal tract (GIT) and human health. Although the gut microbiota (GMB) has proven to be a core component of human health under standard metabolic conditions, there is now also a strong link connecting the composition and function of the GMB to the development of numerous diseases, especially the ones of musculoskeletal nature. The symbiotic microbes that reside in the gastrointestinal tract are very sensitive to biochemical stimuli and may respond in many different ways depending on the nature of these biological signals. Certain variables such as nutrition and physical modulation can either enhance or disrupt the equilibrium between the various species of gut microbes. In fact, fat-rich diets can cause dysbiosis, which decreases the number of protective bacteria and compromises the integrity of the epithelial barrier in the GIT. Overgrowth of pathogenic microbes then release higher quantities of toxic metabolites into the circulatory system, especially the pro-inflammatory cytokines detected in osteoarthritis (OA), thereby promoting inflammation and the initiation of many disease processes throughout the body. Although many studies link OA with GMB perturbations, further research is still needed.


Assuntos
Disbiose , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal , Osteoartrite , Animais , Disbiose/imunologia , Disbiose/microbiologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Osteoartrite/etiologia , Osteoartrite/imunologia , Osteoartrite/microbiologia
5.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163541

RESUMO

Osteoarthritis (OA) has generally been introduced as a degenerative disease; however, it has recently been understood as a low-grade chronic inflammatory process that could promote symptoms and accelerate the progression of OA. Current treatment strategies, including corticosteroid injections, have no impact on the OA disease progression. Mesenchymal stem cells (MSCs) based therapy seem to be in the spotlight as a disease-modifying treatment because this strategy provides enlarged anti-inflammatory and chondroprotective effects. Currently, bone marrow, adipose derived, synovium-derived, and Wharton's jelly-derived MSCs are the most widely used types of MSCs in the cartilage engineering. MSCs exert immunomodulatory, immunosuppressive, antiapoptotic, and chondrogenic effects mainly by paracrine effect. Because MSCs disappear from the tissue quickly after administration, recently, MSCs-derived exosomes received the focus for the next-generation treatment strategy for OA. MSCs-derived exosomes contain a variety of miRNAs. Exosomal miRNAs have a critical role in cartilage regeneration by immunomodulatory function such as promoting chondrocyte proliferation, matrix secretion, and subsiding inflammation. In the future, a personalized exosome can be packaged with ideal miRNA and proteins for chondrogenesis by enriching techniques. In addition, the target specific exosomes could be a gamechanger for OA. However, we should consider the off-target side effects due to multiple gene targets of miRNA.


Assuntos
Exossomos/transplante , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Osteoartrite/terapia , Animais , Diferenciação Celular , Condrogênese , Progressão da Doença , Exossomos/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/imunologia , Comunicação Parácrina , Regeneração
6.
Bioengineered ; 13(1): 1736-1745, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990303

RESUMO

Accumulating studies have suggested that microRNAs (miRNAs) play vital roles in the pathogenesis of osteoarthritis (OA). Nevertheless, the specific function of miR-128-3p in OA remains unknown. In this study, we demonstrated that miR-128-3p was decreased and ZEB1 was increased in OA. Additionally, miR-128-3p expression was negatively correlated with ZEB1. miR-128-3p overexpression or ZEB1 silencing attenuated extracellular matrix degradation and cell apoptosis, and increased the proliferation of IL-1ß-activated CHON-001 cells. Furthermore, ZEB1 was directly targeted by miR-128-3p. In addition, ZEB1 upregulation restored the effects of miR-128-3p overexpression on OA progression. Overall, our findings suggested that miR-128-3p might regulate the development of OA via targeting ZEB1.


Assuntos
Condrócitos/citologia , Interleucina-1beta/efeitos adversos , MicroRNAs/genética , Osteoartrite/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Idoso , Linhagem Celular , Sobrevivência Celular , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/imunologia , Regulação para Cima
7.
Bioengineered ; 13(1): 1746-1757, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001833

RESUMO

Achyranthes bidentate is a common traditional Chinese medicine (TCM) used in treating osteoarthritis (OA). The compatibility between effective components has now become a breakthrough in understanding the mechanism of TCM. This study aimed at determining the optimal compatibility and possible mechanism of Achyranthes bidentate for OA treatment. Results showed that the adhesion score of the OA group is higher than NC group, and showed a trend of down-regulation in the intervention group. The CHI3L1 and IL-1ß in joint fluid of the OA group was significantly increased compared to the sham operation group (NC group). Group G, I, and L exhibited significantly down-regulated CHI3L1, while groups C, F, I, K, and L exhibited reduced IL-1ß. Joint adhesion, damage in cartilage, and synovial tissue was found in the OA model, cartilage tissue was found recovered in groups I, J, and L, and synovial tissue was recovered in group G, I, and L. Thus, group I and L were chosen for metabolite analysis, and indole-3-propionic acid was slightly up-regulated, while koeiginequinone A, prostaglandin H2, and 1-hydroxy-3-methoxy-10-methylacridonew were down-regulated in group I and L. According to functional analysis, the arachidonic acid (AA) metabolic pathway is enriched. Down-regulated expression of vital proteins in the AA metabolism pathway, such as PGE2 and COX2 in group I and L were verified. In conclusion, Hydroxyecdysone, Oleanolic acid, Achyranthes bidentata polysaccharide at a compatibility of 0.03-µg/mg, 2.0-µg/mg, 20.0-µg/mg or 0.03-µg/mg, 2.0-µg/mg, 10.0-µg/mg, respectively, may be the optimal compatibility of Achyranthes bidentate.


Assuntos
Achyranthes/química , Proteína 1 Semelhante à Quitinase-3/metabolismo , Condrócitos/citologia , Interleucina-1beta/efeitos adversos , Osteoartrite/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Condrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/metabolismo , Masculino , Metabolômica/métodos , Ácido Oleanólico/administração & dosagem , Ácido Oleanólico/farmacologia , Osteoartrite/imunologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia , Ratos , Regulação para Cima/efeitos dos fármacos
8.
Ann N Y Acad Sci ; 1508(1): 92-104, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34671981

RESUMO

Recently, interleukin-38 (IL-38) was identified as an important anti-inflammatory and immunosuppressive factor, but its functional role in temporomandibular joint (TMJ) inflammation remains unknown. This study aimed to elucidate how IL-38 affects chondrocytes and the underlying mechanism that contributes to anti-inflammatory processes in the TMJ. Western blotting, quantitative real-time PCR, enzyme-linked immunosorbent assay, and immunofluorescence analysis were used to verify that IL-38 has anti-inflammatory effects on chondrocytes, and the related key pathways were analyzed by western blotting. SiRNA-IL-38, siRNA-NLRP3, and MCC950 were used to investigate the mechanism underlying the anti-inflammatory effects of IL-38. Inflammation models were induced by injection of complete Freund's adjuvant in TMJ with mouse recombinant IL-38 in in vivo studies. Histological and immunohistochemical analyses were used to investigate histological changes in the cartilage. The results showed that IL-38 inhibited the expression of inflammatory cytokines and MMPs. IL-38 limited inflammation by inhibiting the expression of MAPKs/NF-κB and the NLRP3/caspase-1 pathway. In vivo, IL-38 reduced chondrocyte inflammation and limited cartilage degeneration. This study shows for the first time that IL-38 plays a protective role in TMJ cartilage. IL-38 exerts anti-inflammatory effects through the NLRP3/caspase-1 pathway and may be a promising agent for treating TMJ inflammation.


Assuntos
Caspase 1/imunologia , Inflamação/imunologia , Interleucina-1/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Osteoartrite/imunologia , Articulação Temporomandibular/imunologia , Animais , Cartilagem/imunologia , Masculino , Camundongos
9.
Front Immunol ; 12: 734322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956173

RESUMO

Osteoarthritis (OA) may result from impaired ability of synovial macrophages to resolve joint inflammation. Increasing macrophage counts in inflamed joints through injection with bone marrow mononuclear cells (BMNC) induces lasting resolution of synovial inflammation. To uncover mechanisms by which BMNC may affect resolution, in this study, differential transcriptional signatures of BMNC in response to normal (SF) and inflamed synovial fluid (ISF) were analyzed. We demonstrate the temporal behavior of co-expressed gene networks associated with traits from related in vivo and in vitro studies. We also identified activated and inhibited signaling pathways and upstream regulators, further determining their protein expression in the synovium of inflamed joints treated with BMNC or DPBS controls. BMNC responded to ISF with an early pro-inflammatory response characterized by a short spike in the expression of a NF-ƙB- and mitogen-related gene network. This response was associated with sustained increased expression of two gene networks comprising known drivers of resolution (IL-10, IGF-1, PPARG, isoprenoid biosynthesis). These networks were common to SF and ISF, but more highly expressed in ISF. Most highly activated pathways in ISF included the mevalonate pathway and PPAR-γ signaling, with pro-resolving functional annotations that improve mitochondrial metabolism and deactivate NF-ƙB signaling. Lower expression of mevalonate kinase and phospho-PPARγ in synovium from inflamed joints treated with BMNC, and equivalent IL-1ß staining between BMNC- and DPBS-treated joints, associates with accomplished resolution in BMNC-treated joints and emphasize the intricate balance of pro- and anti-inflammatory mechanisms required for resolution. Combined, our data suggest that BMNC-mediated resolution is characterized by constitutively expressed homeostatic mechanisms, whose expression are enhanced following inflammatory stimulus. These mechanisms translate into macrophage proliferation optimizing their capacity to counteract inflammatory damage and improving their general and mitochondrial metabolism to endure oxidative stress while driving tissue repair. Such effect is largely achieved through the synthesis of several lipids that mediate recovery of homeostasis. Our study reveals candidate mechanisms by which BMNC provide lasting improvement in patients with OA and suggests further investigation on the effects of PPAR-γ signaling enhancement for the treatment of arthritic conditions.


Assuntos
Células da Medula Óssea/imunologia , Leucócitos Mononucleares/imunologia , Osteoartrite/complicações , Osteoartrite/imunologia , Sinovite/complicações , Sinovite/imunologia , Transcriptoma/genética , Animais , Articulações do Carpo/imunologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genômica/métodos , Cavalos , Lipopolissacarídeos/efeitos adversos , Macrófagos/imunologia , Masculino , Osteoartrite/genética , Líquido Sinovial/imunologia , Sinovite/induzido quimicamente , Sinovite/genética
10.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769349

RESUMO

Recent evidence has suggested that synovial inflammation and macrophage polarization were involved in the pathogenesis of osteoarthritis (OA). Additionally, high-molecular-weight hyaluronic acid (HMW-HA) was often used clinically to treat OA. GRP78, an endoplasmic reticulum (ER) stress chaperone, was suggested to contribute to the hyperplasia of synovial cells in OA. However, it was still unclear whether HMW-HA affected macrophage polarization through GRP78. Therefore, we aimed to identify the effect of HMW-HA in primary synovial cells and macrophage polarization and to investigate the role of GRP78 signaling. We used IL-1ß to treat primary synoviocytes to mimic OA, and then treated them with HMW-HA. We also collected conditioned medium (CM) to culture THP-1 macrophages and examine the changes in the phenotype. IL-1ß increased the expression of GRP78, NF-κB (p65 phosphorylation), IL-6, and PGE2 in primary synoviocytes, accompanied by an increased macrophage M1/M2 polarization. GRP78 knockdown significantly reversed the expression of IL-1ß-induced GRP78-related downstream molecules and macrophage polarization. HMW-HA with GRP78 knockdown had additive effects in an IL-1ß culture. Finally, the synovial fluid from OA patients revealed significantly decreased IL-6 and PGE2 levels after the HMW-HA treatment. Our study elucidated a new form of signal transduction for HMW-HA-mediated protection against synovial inflammation and macrophage polarization and highlighted the involvement of the GRP78-NF-κB signaling pathway.


Assuntos
Chaperona BiP do Retículo Endoplasmático/metabolismo , Ácido Hialurônico/farmacologia , Inflamação/prevenção & controle , Interleucina-1beta/efeitos adversos , Macrófagos/imunologia , NF-kappa B/metabolismo , Osteoartrite/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Citocinas/metabolismo , Chaperona BiP do Retículo Endoplasmático/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Ativação de Macrófagos , Pessoa de Meia-Idade , Peso Molecular , NF-kappa B/genética , Osteoartrite/induzido quimicamente , Osteoartrite/imunologia , Osteoartrite/patologia , Transdução de Sinais , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/imunologia , Sinoviócitos/metabolismo , Sinoviócitos/patologia
11.
Scand J Immunol ; 94(4): e13092, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34780075

RESUMO

The cholinergic anti-inflammatory pathway (CAP) is a classic neuroimmune pathway, consisting of the vagus nerve, acetylcholine (ACh)-the pivotal neurotransmitter of the vagus nerve-and its receptors. This pathway can activate and regulate the activities of immune cells, inhibit cell proliferation and differentiation, as well as suppress cytokine release, thereby playing an anti-inflammatory role, and widely involved in the occurrence and development of various diseases; recent studies have demonstrated that the CAP may be a new target for the treatment of autoimmune rheumatic diseases. In this review, we will summarize the latest progress with the view of figuring out the role of the cholinergic pathway and how it interacts with inflammatory reactions in several autoimmune rheumatic diseases, and many advances are results from a wide range of experiments performed in vitro and in vivo.


Assuntos
Doenças Autoimunes/etiologia , Doenças Reumáticas/etiologia , Acetilcolina/imunologia , Animais , Artrite Reumatoide/etiologia , Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Humanos , Inflamação/imunologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/imunologia , Neuroimunomodulação , Osteoartrite/etiologia , Osteoartrite/imunologia , Receptores Colinérgicos/imunologia , Doenças Reumáticas/imunologia , Escleroderma Sistêmico/etiologia , Escleroderma Sistêmico/imunologia , Síndrome de Sjogren/etiologia , Síndrome de Sjogren/imunologia , Espondiloartropatias/etiologia , Espondiloartropatias/imunologia , Nervo Vago/imunologia
12.
Front Immunol ; 12: 763702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804052

RESUMO

Synovial joints are complex structures that enable normal locomotion. Following injury, they undergo a series of changes, including a prevalent inflammatory response. This increases the risk for development of osteoarthritis (OA), the most common joint disorder. In healthy joints, macrophages are the predominant immune cells. They regulate bone turnover, constantly scavenge debris from the joint cavity and, together with synovial fibroblasts, form a protective barrier. Macrophages thus work in concert with the non-hematopoietic stroma. In turn, the stroma provides a scaffold as well as molecular signals for macrophage survival and functional imprinting: "a macrophage niche". These intricate cellular interactions are susceptible to perturbations like those induced by joint injury. With this review, we explore how the concepts of local tissue niches apply to synovial joints. We introduce the joint micro-anatomy and cellular players, and discuss their potential interactions in healthy joints, with an emphasis on molecular cues underlying their crosstalk and relevance to joint functionality. We then consider how these interactions are perturbed by joint injury and how they may contribute to OA pathogenesis. We conclude by discussing how understanding these changes might help identify novel therapeutic avenues with the potential of restoring joint function and reducing post-traumatic OA risk.


Assuntos
Macrófagos/fisiologia , Monócitos/fisiologia , Osteoartrite/etiologia , Membrana Sinovial/fisiologia , Movimento Celular , Humanos , Articulação do Joelho/anatomia & histologia , Osteoartrite/tratamento farmacológico , Osteoartrite/imunologia , Membrana Sinovial/lesões
13.
Int Immunopharmacol ; 101(Pt A): 108207, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34628269

RESUMO

OBJECTIVE: To investigate the roles and regulatory mechanisms of miR-9-5p in the development of osteoarthritis (OA). METHODS: Synovial tissues from mouse OA model and control groups were collected and miR-9-5p expression levels and macrophage markers were measured with qPCR. The function of miR-9-5p in macrophage polarization was analyzed by flow cytometry and qPCR. Various databases were employed to screen the target genes one of which was validated with dual-luciferase analysis. Following the validation, rescue research was applied, and the signaling pathways were analyzed with Western blotting. Finally, the role of miR-9-5p in the progression of OA was validated in the mouse model. RESULTS: MiR-9-5p was highly expressed in the synovial tissues of the OA model and was positively associated with M1 markers. Function analysis demonstrated that miR-9-5p could promote the progression of OA by promoting M1 polarization and inhibiting M2 polarization in vivo and in vitro. The mechanism analysis demonstrated that miR-9-5p could regulate macrophage polarization via NF-κB and AMPK signaling pathways by inhibiting SIRT1 expression. CONCLUSIONS: MiR-9-5p could promote M1 polarization and OA progression by regulating NF-κB and AMPK signaling pathways by inhibiting SIRT1 expression.


Assuntos
Macrófagos/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Osteoartrite/etiologia , Transdução de Sinais , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Cartilagem Articular/patologia , Diferenciação Celular , Polaridade Celular , Modelos Animais de Doenças , Progressão da Doença , Macrófagos/imunologia , Masculino , Camundongos , Osteoartrite/imunologia , Osteoartrite/metabolismo , Osteoartrite/patologia
14.
Front Immunol ; 12: 740742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712229

RESUMO

The treatment of chronic inflammatory and degenerative diseases by low dose radiation therapy (LDRT) is promising especially for patients who were refractory for classical therapies. LDRT aims to reduce pain of patients and to increase their mobility. Although LDRT has been applied since the late 19th century, the immunological mechanisms remain elusive. Within the prospective IMMO-LDRT01 trial (NCT02653079) the effects of LDRT on the peripheral blood immune status, as well as on pain and life quality of patients have been analyzed. Blood is taken before and after every serial irradiation with a single dose per fraction of 0.5Gy, as well as during follow-up appointments in order to determine a detailed longitudinal immune status by multicolor flow cytometry. Here, we report the results of an interim analysis of 125 patients, representing half the number of patients to be recruited. LDRT significantly improved patients' pain levels and induced distinct systemic immune modulations. While the total number of leukocytes remained unchanged in the peripheral blood, LDRT induced a slight reduction of eosinophils, basophils and plasmacytoid dendritic cells and an increase of B cells. Furthermore, activated immune cells were decreased following LDRT. Especially cells of the monocytic lineage correlated to LDRT-induced improvements of clinical symptoms, qualifying these immune cells as predictive biomarkers for the therapeutic success. We conclude that LDRT improves pain of the patients by inducing systemic immune modulations and that immune biomarkers could be defined for prediction by improved patient stratification in the future.


Assuntos
Subpopulações de Linfócitos B/imunologia , Eosinófilos/imunologia , Leucócitos Mononucleares/patologia , Monócitos/imunologia , Osteoartrite/radioterapia , Dor/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Contagem de Células , Feminino , Seguimentos , Humanos , Imunomodulação , Leucócitos Mononucleares/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Osteoartrite/imunologia , Radioterapia
15.
Int Immunopharmacol ; 101(Pt A): 108179, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601329

RESUMO

The term "osteoimmunology" was coined to denote the bridge between the immune system and the skeletal system. Osteoimmunology is interdisciplinary, and a full understanding and development of this "bridge" will provide an in-depth understanding of the switch between body health and disease development. B lymphocytes can promote the maturation and differentiation of osteoclasts, and osteoclasts have a negative feedback effect on B lymphocytes. Different subtypes of T lymphocytes regulate osteoclasts in different directions. T lymphocytes have a two-way regulatory effect on osteoblasts, while B lymphocytes have minimal regulatory effects on osteoblasts. In contrast, osteoblasts can promote the differentiation and maturation of T lymphocytes and B lymphocytes. Different immune cells have different effects on chondrocytes; some cooperate with each other, while some antagonize each other. In a healthy adult body, bone resorption and bone formation are in a dynamic balance under the action of multiple mechanisms. In this review, we summarize the interactions and key signaling molecular mechanisms between each type of cell in the immune system and the skeletal system.


Assuntos
Comunicação Celular/imunologia , Osteoartrite/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Condrócitos/imunologia , Condrócitos/patologia , Modelos Animais de Doenças , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteoartrite/patologia , Osteoblastos/imunologia , Osteoblastos/metabolismo , Osteoclastos/imunologia , Osteoclastos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
Bioengineered ; 12(1): 8920-8930, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34652255

RESUMO

Synovial macrophage polarization is essential for osteoarthritis (OA) development. Our study aims to investigate the underlying function and the molecular mechanisms of hsa_circ_0005567 in macrophage polarization. Circular RNA (CircRNA), microRNA (miRNA), and mRNA expression levels were detected by quantitative reverse transcription polymerase chain reaction (RT-qPCR). RNA pull down, luciferase reporter were employed to test the interaction between miR-492 and hsa_circ_0005567/suppressors of cytokine signaling 2 (SOCS2). Ectopic overexpression was used to evaluate the function of hsa_circ_0005567. The supernatant of THP-1 cells was used to incubate chondrocytes. Cell Counting Kit-8 (CCK-8) and flow cytometry were conducted to determine cell viability, proportion of M1 or M2 macrophages and apoptotic rate. The results showed that the hsa_circ_0005567 expression level was downregulated in the synovial tissues of osteoarthritis patients. Overexpression of hsa_circ_0005567 inhibited M1 macrophage polarization, and promoted M2 macrophage polarization. Hsa_circ_0005567 was proved to be a molecular sponge for miR-492, and SOCS2 was verified as the target of miR-492. MiR-492 mimic could reverse the effect of hsa_circ_0005567 overexpression on macrophage polarization. Besides, the supernatant from LPS-treated THP-1 macrophage significantly decreased chondrocytes cell viability and increased cell apoptosis ratio, which was reversed by hsa_circ_0005567 overexpression. In conclusion, hsa_circ_0005567 overexpression promoted M2 macrophage polarization through miR-492/SOCS2 axis to reduced chondrocyte apoptosis, which could inhibit osteoarthritis progression.


Assuntos
Condrócitos/metabolismo , Macrófagos/imunologia , MicroRNAs/genética , Osteoartrite/prevenção & controle , RNA Circular/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Líquido Sinovial/metabolismo , Adulto , Idoso , Apoptose , Estudos de Casos e Controles , Células Cultivadas , Condrócitos/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/imunologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Proteínas Supressoras da Sinalização de Citocina/genética
17.
Front Immunol ; 12: 695257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539627

RESUMO

Inflammation is an important biological response to tissue damage caused by injury, with a crucial role in initiating and controlling the healing process. However, dysregulation of the process can also be a major contributor to tissue damage. Related to this, although mitochondria are typically thought of in terms of energy production, it has recently become clear that these important organelles also orchestrate the inflammatory response via multiple mechanisms. Dysregulated inflammation is a well-recognised problem in skeletal joint diseases, such as rheumatoid arthritis. Interestingly osteoarthritis (OA), despite traditionally being known as a 'non-inflammatory arthritis', now appears to involve an element of chronic inflammation. OA is considered an umbrella term for a family of diseases stemming from a range of aetiologies (age, obesity etc.), but all with a common presentation. One particular OA sub-set called Post-Traumatic OA (PTOA) results from acute mechanical injury to the joint. Whether the initial mechanical tissue damage, or the subsequent inflammatory response drives disease, is currently unclear. In the former case; mechanobiological properties of cells/tissues in the joint are a crucial consideration. Many such cell-types have been shown to be exquisitely sensitive to their mechanical environment, which can alter their mitochondrial and cellular function. For example, in bone and cartilage cells fluid-flow induced shear stresses can modulate cytoskeletal dynamics and gene expression profiles. More recently, immune cells were shown to be highly sensitive to hydrostatic pressure. In each of these cases mitochondria were central to these responses. In terms of acute inflammation, mitochondria may have a pivotal role in linking joint tissue injury with chronic disease. These processes could involve the immune cells recruited to the joint, native/resident joint cells that have been damaged, or both. Taken together, these observations suggest that mitochondria are likely to play an important role in linking acute joint tissue injury, inflammation, and long-term chronic joint degeneration - and that the process involves mechanobiological factors. In this review, we will explore the links between mechanobiology, mitochondrial function, inflammation/tissue-damage in joint injury and disease. We will also explore some emerging mitochondrial therapeutics and their potential for application in PTOA.


Assuntos
Cartilagem Articular/metabolismo , Mecanotransdução Celular , Mitocôndrias/metabolismo , Osteoartrite/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/imunologia , Cartilagem Articular/patologia , Citocinas/metabolismo , Humanos , Pressão Hidrostática , Mediadores da Inflamação/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/patologia , Osteoartrite/tratamento farmacológico , Osteoartrite/imunologia , Osteoartrite/patologia , Estresse Mecânico
18.
Nat Rev Rheumatol ; 17(11): 692-705, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34588660

RESUMO

Non-coding RNAs have distinct regulatory roles in the pathogenesis of joint diseases including osteoarthritis (OA) and rheumatoid arthritis (RA). As the amount of high-throughput profiling studies and mechanistic investigations of microRNAs, long non-coding RNAs and circular RNAs in joint tissues and biofluids has increased, data have emerged that suggest complex interactions among non-coding RNAs that are often overlooked as critical regulators of gene expression. Identifying these non-coding RNAs and their interactions is useful for understanding both joint health and disease. Non-coding RNAs regulate signalling pathways and biological processes that are important for normal joint development but, when dysregulated, can contribute to disease. The specific expression profiles of non-coding RNAs in various disease states support their roles as promising candidate biomarkers, mediators of pathogenic mechanisms and potential therapeutic targets. This Review synthesizes literature published in the past 2 years on the role of non-coding RNAs in OA and RA with a focus on inflammation, cell death, cell proliferation and extracellular matrix dysregulation. Research to date makes it apparent that 'non-coding' does not mean 'non-essential' and that non-coding RNAs are important parts of a complex interactome that underlies OA and RA.


Assuntos
Regulação da Expressão Gênica , Artropatias , Articulações , RNA não Traduzido , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/fisiopatologia , Biomarcadores/análise , Epigênese Genética/imunologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/fisiologia , Genômica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/fisiopatologia , Inflamação/terapia , Artropatias/genética , Artropatias/imunologia , Artropatias/fisiopatologia , Artropatias/terapia , Articulações/imunologia , Articulações/fisiologia , Articulações/fisiopatologia , Osteoartrite/genética , Osteoartrite/imunologia , Osteoartrite/fisiopatologia , RNA/classificação , RNA/fisiologia , RNA não Traduzido/biossíntese , RNA não Traduzido/classificação , RNA não Traduzido/fisiologia
19.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502384

RESUMO

Chronic low-grade inflammation plays a central role in the pathogenesis of osteoarthritis (OA), and several pro- and anti-inflammatory cytokines have been implicated to mediate and regulate this process. Out of these cytokines, particularly IFNγ, IL-1ß, IL-4 and IL-17 are associated with different phenotypes of T helper (TH) cells and macrophages, both examples of cells known for great phenotypic and functional heterogeneity. Chondrocytes also display various phenotypic changes during the course of arthritis. We set out to study the hypothesis of whether chondrocytes might adopt polarized phenotypes analogous to TH cells and macrophages. We studied the effects of IFNγ, IL-1ß, IL-4 and IL-17 on gene expression in OA chondrocytes with RNA-Seq. Chondrocytes were harvested from the cartilage of OA patients undergoing knee replacement surgery and then cultured with or without the cytokines for 24 h. Total RNA was isolated and sequenced, and GO (Gene Ontology) functional analysis was performed. We also separately investigated genes linked to OA in recent genome wide expression analysis (GWEA) studies. The expression of more than 2800 genes was significantly altered in chondrocytes treated with IL-1ß [in the C(IL-1ß) phenotype] with a fold change (FC) > 2.5 in either direction. These included a large number of genes associated with inflammation, cartilage degradation and attenuation of metabolic signaling. The profile of genes differentially affected by IFNγ (the C(IFNγ) phenotype) was relatively distinct from that of the C(IL-1ß) phenotype and included several genes associated with antigen processing and presentation. The IL-17-induced C(IL-17) phenotype was characterized by the induction of a more limited set of proinflammatory factors compared to C(IL-1ß) cells. The C(IL-4) phenotype induced by IL-4 displayed a differential expression of a rather small set of genes compared with control, primarily those associated with TGFß signaling and the regulation of inflammation. In conclusion, our results show that OA chondrocytes can adopt diverse phenotypes partly analogously to TH cells and macrophages. This phenotypic plasticity may play a role in the pathogenesis of arthritis and open new therapeutic avenues for the development of disease-modifying treatments for (osteo)arthritis.


Assuntos
Condrócitos/imunologia , Condrócitos/metabolismo , Osteoartrite/metabolismo , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Osteoartrite/imunologia , Fenótipo , Análise de Sequência de RNA/métodos , Transdução de Sinais/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
20.
Aging (Albany NY) ; 13(18): 22134-22147, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550907

RESUMO

BACKGROUND: Osteoarthritis (OA) is degenerative joint disorder mainly characterized by long-term pain with limited activity of joints, the disease has no effective preventative therapy. Rutin (RUT) is a flavonoid compound, present naturally. The flavonoid shows range of biological activities such as anti-inflammatory and anti-cancer effect. We screened RUT for its activity against osteoarthritis with in vivo and in vitro models of osteoarthritis. METHODS: Animal model of OA was developed using C57BL/6 mice by surgical destabilization of medial meniscus. For in vitro studies the human articular cartilage tissues were used which were collected from osteoarthritis patients and were processed to isolate chondrocytes. The chondrocytes were submitted to advanced glycation end products (AGEs) for inducing osteoarthritis in vitro. Cell viability was done by CCK-8 assay, ELISA analysis for MMP13, collage II, PGE2, IL-6, TNF-α, ADAMTS-5 and MMP-13. Western blot analysis was done for expression of proteins and in silico analysis was done by docking studies. RESULTS: Pretreatment of RT showed no cytotoxic effect and also ameliorated the AGE mediated inflammatory reaction on human chondrocytes in vitro. Treatment of RT inhibited the levels of COX-2 and iNOS in AGE exposed chondrocytes. RT decreased the AGE mediated up-regulation of IL-6, NO, TNF-α and PGE-2 in a dose dependent manner. Pretreatment of RT decreased the extracellular matrix degradation, inhibited expression of TRAF-6 and BCL-2 the NF-κB/MAPK pathway proteins. The treatment of RT in mice prevented the calcification of cartilage tissues, loss of proteoglycans and also halted the narrowing of joint space is mice subjected to osteoarthritis. The in-silico analysis suggested potential binding affinity of RT with TRAF-6 and BCL-2. CONCLUSION: In brief RT inhibited AGE-induced inflammatory reaction and also degradation of ECM via targeting the NF-κB/MAPK pathway proteins BCL-2 and TRAF-6. RT can be a potential molecule in treating OA.


Assuntos
Anti-Inflamatórios/administração & dosagem , Matriz Extracelular/imunologia , Produtos Finais de Glicação Avançada/imunologia , Osteoartrite/tratamento farmacológico , Osteoartrite/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Rutina/administração & dosagem , Fator 6 Associado a Receptor de TNF/imunologia , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/imunologia , Condrócitos/efeitos dos fármacos , Condrócitos/imunologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Dinoprostona/imunologia , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/imunologia , Osteoartrite/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fator 6 Associado a Receptor de TNF/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...